17/08/2020

The leopard never changes its spots: Realistic pigmentation pattern formation by coupling tissue growth with reaction-diffusion

Marcelo De Gomensoro Malheiros, Henrique Fensterseifer, Marcelo Walter

Keywords: pattern formation, natural phenomena, texturing, reaction-diffusion, turing model

Abstract: Previous research in pattern formation using reaction-diffusion mostly focused on static domains, either for computational simplicity or mathematical tractability. In this work, we have explored the expressiveness of combining simple mechanisms as a possible explanation for pigmentation pattern formation, where tissue growth plays a crucial role. Our motivation is not only to realistically reproduce natural patterns but also to get insights into the underlying biological processes. Therefore, we present a novel approach to generate realistic animal skin patterns. First, we describe the approximation of tissue growth by a series of discrete matrix expansion operations. Then, we combine it with an adaptation of Turing’s non-linear reaction-diffusion model, which enforces upper and lower bounds to the concentrations of the involved chemical reagents. We also propose the addition of a single-reagent continuous autocatalytic reaction, called reinforcement, to provide a mechanism to maintain an already established pattern during growth. By careful adjustment of the parameters and the sequencing of operations, we closely match the appearance of a few real species. In particular, we reproduce in detail the distinctive features of the leopard skin, also providing a hypothesis for the simultaneous productions of the most common melanin types, eumelanin and pheomelanin.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3386569.3392478#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGGRAPH 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers