08/12/2020

KeyGames: A Game Theoretic Approach to Automatic Keyphrase Extraction

Arnav Saxena, Mudit Mangal, Goonjan Jain

Keywords:

Abstract: In this paper, we introduce two advancements in the automatic keyphrase extraction (AKE) space - KeyGames and pke+. KeyGames is an unsupervised AKE framework that employs the concept of evolutionary game theory and consistent labelling problem to ensure consistent classification of candidates into keyphrase and non-keyphrase. Pke+ is a python based pipeline built on top of the existing pke library to standardize various AKE steps, namely candidate extraction and evaluation, to ensure truly systematic and comparable performance analysis of AKE models. In the experiments section, we compare the performance of KeyGames across three publicly available datasets (Inspec 2001, SemEval 2010, DUC 2001) against the results quoted by the existing state-of-the-art models as well as their performance when reproduced using pke+. The results show that KeyGames outperforms most of the state-of-the-art systems while generalizing better on input documents with different domains and length. Further, pke+’s pre-processing brings out improvement in several other system’s quoted performance as well.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6187-keygames-a-game-theoretic-approach-to-automatic-keyphrase-extraction
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers