08/12/2020

An Empirical Study of the Downstream Reliability of Pre-Trained Word Embeddings

Anthony Rios, Brandon Lwowski

Keywords:

Abstract: While pre-trained word embeddings have been shown to improve the performance of downstream tasks, many questions remain regarding their reliability: Do the same pre-trained word embeddings result in the best performance with slight changes to the training data? Do the same pre-trained embeddings perform well with multiple neural network architectures? Do imputation strategies for unknown words impact reliability? In this paper, we introduce two new metrics to understand the downstream reliability of word embeddings. We find that downstream reliability of word embeddings depends on multiple factors, including, the evaluation metric, the handling of out-of-vocabulary words, and whether the embeddings are fine-tuned.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6312-an-empirical-study-of-the-downstream-reliability-of-pre-trained-word-embeddings
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers