08/12/2020

Explainable and Sparse Representations of Academic Articles for Knowledge Exploration

Keng-Te Liao, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, PoChun Chen, Kuansan Wang, Shou-de Lin

Keywords:

Abstract: We focus on a recently deployed system built for summarizing academic articles by concept tagging. The system has shown great coverage and high accuracy of concept identification which could be contributed by the knowledge acquired from millions of publications. Provided with the interpretable concepts and knowledge encoded in a pre-trained neural model, we investigate whether the tagged concepts can be applied to a broader class of applications. We propose transforming the tagged concepts into sparse vectors as representations of academic documents. The effectiveness of the representations is analyzed theoretically by a proposed framework. We also empirically show that the representations can have advantages on academic topic discovery and paper recommendation. On these applications, we reveal that the knowledge encoded in the tagging system can be effectively utilized and can help infer additional features from data with limited information.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6252-explainable-and-sparse-representations-of-academic-articles-for-knowledge-exploration
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers