08/12/2020

Predicting Modality in Financial Dialogue

Kilian Theil, Heiner Stuckenschmidt

Keywords:

Abstract: In this paper, we perform modality prediction in financial dialogue. To this end, we introduce a new dataset and develop a binary classifier to detect strong or weak modal answers depending on surface, lexical, and semantic representations of the preceding question and financial features. To do so, we contrast different algorithms, feature categories, and fusion methods. Perhaps counter-intuitively, our results indicate that the strongest features for the given task are financial uncertainty measures such as market and individual firm risk.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6523-predicting-modality-in-financial-dialogue
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers