08/12/2020

Neural Machine Translation Doesn’t Translate Gender Coreference Right Unless You Make It

Danielle Saunders, Rosie Sallis, Bill Byrne

Keywords:

Abstract: Neural Machine Translation (NMT) has been shown to struggle with grammatical gender that is dependent on the gender of human referents, which can cause gender bias effects. Many existing approaches to this problem seek to control gender inflection in the target language by explicitly or implicitly adding a gender feature to the source sentence, usually at the sentence level. In this paper we propose schemes for incorporating explicit word-level gender inflection tags into NMT. We explore the potential of this gender-inflection controlled translation when the gender feature can be determined from a human reference, or when a test sentence can be automatically gender-tagged, assessing on English-to-Spanish and English-to-German translation. We find that simple existing approaches can over-generalize a gender-feature to multiple entities in a sentence, and suggest effective alternatives in the form of tagged coreference adaptation data. We also propose an extension to assess translations of gender-neutral entities from English given a corresponding linguistic convention, such as a non-binary inflection, in the target language.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6592-neural-machine-translation-doesn%27t-translate-gender-coreference-right-unless-you-make-it
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers