08/12/2020

Multi-dialect Arabic BERT for Country-level Dialect Identification

Bashar Talafha, Mohammad Ali, Muhy Eddin Za’ter, Haitham Seelawi, Ibraheem Tuffaha, Mostafa Samir, Wael Farhan, Hussein Al-Natsheh

Keywords:

Abstract: Arabic dialect identification is a complex problem for a number of inherent properties of the language itself. In this paper, we present the experiments conducted, and the models developed by our competing team, Mawdoo3 AI, along the way to achieving our winning solution to subtask 1 of the Nuanced Arabic Dialect Identification (NADI) shared task. The dialect identification subtask provides 21,000 country-level labeled tweets covering all 21 Arab countries. An unlabeled corpus of 10M tweets from the same domain is also presented by the competition organizers for optional use. Our winning solution itself came in the form of an ensemble of different training iterations of our pre-trained BERT model, which achieved a micro-averaged F1-score of 26.78% on the subtask at hand. We publicly release the pre-trained language model component of our winning solution under the name of Multi-dialect-Arabic-BERT model, for any interested researcher out there.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6530-multi-dialect-arabic-bert-for-country-level-dialect-identification
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers