08/07/2020

On the Size of Finite Rational Matrix Semigroups

Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu and Jonathan Tanner

Keywords: Matrix semigroups, Burnside problem, weighted automata, vector addition systems

Abstract: Let n be a positive integer and M a set of rational n × n-matrices such that M generates a finite multiplicative semigroup. We show that any matrix in the semigroup is a product of matrices in M whose length is at most 2^{n (2 n + 3)} g(n)^{n+1} ∈ 2^{O(n² log n)}, where g(n) is the maximum order of finite groups over rational n × n-matrices. This result implies algorithms with an elementary running time for deciding finiteness of weighted automata over the rationals and for deciding reachability in affine integer vector addition systems with states with the finite monoid property.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers