08/07/2020

Logic Beyond Formulas: A Proof System on Graphs

Matteo Acclavio, Ross Horne, and Lutz Straßburger

Keywords: prime graphs, analycity, splitting, cut elimination, cographs, graph modules, deep inference, Proof theory

Abstract: In this paper we present a proof system that operates on graphs instead of formulas. We begin our quest with the well-known correspondence between formulas and cographs, which are undirected graphs that do not have P4 (the four-vertex path) as vertex-induced subgraph; and then we drop that condition and look at arbitrary (undirected) graphs. The consequence is that we lose the tree structure of the formulas corresponding to the cographs. Therefore we cannot use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalization of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic (MLL) with mix, meaning that if a graph is a cograph and provable in our system, then it is also provable in MLL+mix.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers