08/07/2020

A spectral bound on hypergraph discrepancy

Aditya Potukuchi

Keywords: Hypergraph discrepancy, Spectral methods, Beck-Fiala conjecture

Abstract: Let ℋ be a t-regular hypergraph on n vertices and m edges. Let M be the m × n incidence matrix of ℋ and let us denote λ = max_{v ∈ 𝟏^⟂} 1/‖v‖ ‖Mv‖. We show that the discrepancy of ℋ is O(√t + λ). As a corollary, this gives us that for every t, the discrepancy of a random t-regular hypergraph with n vertices and m ≥ n edges is almost surely O(√t) as n grows. The proof also gives a polynomial time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers