08/07/2020

Algebraic models of simple type theories: a polynomial approach

Nathanael Arkor & Marcelo Fiore

Keywords: category theory, polynomial functor, simple type theory, algebraic theory, Lambek correspondence, cartesian multicategory, categorical semantics, classifying category

Abstract: We develop algebraic models of simple type theories, laying out a framework that extends universal algebra to incorporate both algebraic sorting and variable binding. Examples of simple type theories include the unityped and simply-typed λ-calculi, the computational λ-calculus, and predicate logic. Simple type theories are given models in presheaf categories, with structure specified by algebras of polynomial endofunctors that correspond to natural deduction rules. Initial models, which we construct, abstractly describe the syntax of simple type theories. Taking substitution structure into consideration, we further provide sound and complete semantics in structured cartesian multicategories. This development generalises Lambek's correspondence between the simply-typed λ-calculus and cartesian-closed categories, to arbitrary simple type theories.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers