08/07/2020

A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity

Clemens Grabmayer and Wan Fokkink

Keywords: complete proof system, process algebra, process graphs, regular expressions, bisimilarity

Abstract: Robin Milner (1984) gave a sound proof system for bisimilarity of regular expressions interpreted as processes: Basic Process Algebra with unary Kleene star iteration, deadlock 0, successful termination 1, and a fixed-point rule. He asked whether this system is complete. Despite intensive research over the last 35 years, the problem is still open. This paper gives a partial positive answer to Milner's problem. We prove that the adaptation of Milner's system over the subclass of regular expressions that arises by dropping the constant 1, and by changing to binary Kleene star iteration is complete. The crucial tool we use is a graph structure property that guarantees expressibility of a process graph by a regular expression, and that is preserved when going over from a process graph to its bisimulation collapse.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers