03/08/2020

From bezout’s identity to space-optimal election in anonymous memory systems

Emmanuel Godard, Damien Imbs, Michel Raynal, Gadi Taubenfeld

Keywords: equality-based comparison, bounded register, atomic register, process identity, symmetric algorithm, asynchrony, concurrent algorithm, bezout identity, symmetry breaking, leader election, RW register, anonymous register

Abstract: An anonymous shared memory REG can be seen as an array of atomic registers such that there is no a priori agreement among the processes on the names of the registers. As an example a very same physical register can be known as REG[x] by a process p and as REG[y] (where y ≠ x) by another process q. Moreover, the register known as REG[a] by a process p and the register known as REG[b] by a process q can be the same physical register. It is assumed that each process has a unique identifier that can only be compared for equality. This article is on solving the d-election problem, in which it is required to elect at least one and at most d leaders, in such an anonymous shared memory system. We notice that the 1-election problem is the familiar leader election problem. Let n be the number of processes and m the size of the anonymous memory (number of atomic registers). The article shows that the condition gcd(m, n) ≤ d is necessary and sufficient for solving the d-election problem, where communication is through read/write or read+modify+write registers. The algorithm used to prove the sufficient condition relies on Bezout’s Identity - a Diophantine equation relating numbers according to their Greatest Common Divisor. Furthermore, in the process of proving the sufficient condition, it is shown that 1-leader election can be solved using only a single read/write register (which refutes a 1989 conjecture stating that three non-anonymous registers are necessary), and that the exact d-election problem, where exactly d leaders must be elected, can be solved if and only if gcd(m, n) divides d.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at PODC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers