03/08/2020

Brief announcement: Classification of distributed binary labeling problems

Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, Jukka Suomela

Keywords: LOCAL model, locally checkable labeling problems, distributed computational complexity, graph problems

Abstract: We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees in the usual LOCAL model of distributed computing. These are locally checkable problems that can be encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, and perfect matching. We show that the complexity of any such problem is in one of the following classes: O(1), Θ(log n), Θ(n), or unsolvable. Furthermore, given the description of any binary labeling problem, we can easily determine in which of the four classes it is and what is an asymptotically optimal algorithm for solving it.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at PODC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers