03/08/2020

Noisy beeps

Klim Efremenko, Gillat Kol, Raghuvansh R. Saxena

Keywords: communication complexity, distributed systems, lower bounds, beeping models, error-correcting codes, interactive coding

Abstract: We study the effect of noise on the n-party beeping model. In this model, in every round, each party may decide to either ’beep’ or not. All parties hear a beep if and only if at least one party beeps. The beeping model is becoming increasingly popular, as it offers a very simple abstraction of wireless networks and is very well suited for studying biological phenomena. Still, the noise resilience of the beeping model is yet to be understood.Our main result is a lower bound, showing that making protocols in the beeping model resilient to noise may have a large performance overhead. Specifically, we give a protocol that works over the (noiseless) beeping model, and prove that any scheme that simulates this protocol over the beeping model with correlated stochastic noise will blow up the number of rounds by an Ω(log n) multiplicative factor.We complement this result by a matching upper bound, constructing a noise-resilient simulation scheme with O(log n) overhead for any noiseless beeping protocol.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at PODC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers