14/07/2020

Self-stabilizing task allocation in spite of noise

Anna Dornhaus, Nancy Lynch, Frederik Mallmann-Trenn, Dominik Pajak, Tsvetomira Radeva

Keywords: ants, task-allocation, biologically inspired algorithms, noise

Abstract: We study the problem of distributed task allocation by workers in an ant colony in a setting of limited capabilities and noisy environment feedback. We assume that each task has a demand that should be satisfied but not exceeded, i.e., there is an optimal number of ants that should be working on this task at a given time. The goal is to assign a near-optimal number of workers to each task in a distributed manner without explicit access to the value of the demand nor to the number of ants working on the task.We seek to answer the question of how the quality of task allocation depends on the accuracy of assessing by the ants whether too many (overload) or not enough (lack) ants are currently working on a given task. In our model, each ant receives a binary feedback that depends on the deficit, defined as the difference between the demand and the current number of workers in the task. The feedback is modeled as a random variable that takes values lack or overload with probability given by a sigmoid function of the deficit. The higher the overload or lack of workers for a task, the more likely it is that an ant receives the correct feedback from this task; the closer the deficit is to zero, the less reliable the feedback becomes. Each ant receives the feedback independently about one chosen task. We measure the performance of task allocation algorithms using the notion of inaccuracy, defined as the number of steps in which the deficit of some task is beyond certain threshold.We propose a simple, constant-memory, self-stabilizing, distributed algorithm that converges from any initial assignment to a near-optimal assignment under noisy feedback and keeps the deficit small for all tasks in almost every step. We also prove a lower bound for any constant-memory algorithm, which matches, up to a constant factor, the accuracy achieved by our algorithm.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SPAA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers