29/06/2020

Can we use SE-specific sentiment analysis tools in a cross-platform setting?

Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela Girardi, Filippo Lanubile

Keywords: machine learning, Sentiment analysis, NLP, human factors, empirical software engineering

Abstract: In this paper, we address the problem of using sentiment analysis tools ’off-the-shelf’, that is when a gold standard is not available for retraining. We evaluate the performance of four SE-specific tools in a cross-platform setting, i.e., on a test set collected from data sources different from the one used for training. We find that (i) the lexicon-based tools outperform the supervised approaches retrained in a cross-platform setting and (ii) retraining can be beneficial in within-platform settings in the presence of robust gold standard datasets, even using a minimal training set. Based on our empirical findings, we derive guidelines for reliable use of sentiment analysis tools in software engineering.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers