29/06/2020

A dataset of dockerfiles

Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, Thomas Reps

Keywords: Docker, Datasets, Bash, Mining, DevOps

Abstract: Dockerfiles are one of the most prevalent kinds of DevOps artifacts used in industry. Despite their prevalence, there is a lack of sophisticated semantics-aware static analysis of Dockerfiles. In this paper, we introduce a dataset of approximately 178,000 unique Dockerfiles collected from GitHub. To enhance the usability of this data, we describe five representations we have devised for working with, mining from, and analyzing these Dockerfiles. Each Dockerfile representation builds upon the previous ones, and the final representation, created by three levels of nested parsing and abstraction, makes tasks such as mining and static checking tractable. The Dockerfiles, in each of the five representations, along with metadata and the tools used to shepard the data from one representation to the next are all available at: https://doi.org/10.5281/zenodo.3628771.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers