22/09/2020

Carousel personalization in music streaming apps with contextual bandits

Walid Bendada, Guillaume Salha, Théo Bontempelli

Keywords: Contextual Bandits, Music Streaming Platforms, A/B Testing, Expected Regret, Playlist Recommendation, Cascade Models, Carousel Personalization, Multi-Armed Bandits with Multiple Plays

Abstract: Media services providers, such as music streaming platforms, frequently leverage swipeable carousels to recommend personalized content to their users. However, selecting the most relevant items (albums, artists, playlists...) to display in these carousels is a challenging task, as items are numerous and as users have different preferences. In this paper, we model carousel personalization as a contextual multi-armed bandit problem with multiple plays, stochastic arm display and delayed batch feedback. We empirically show the effectiveness of our framework at capturing characteristics of real-world carousels by addressing a large-scale playlist recommendation task on a global music streaming mobile app. Along with this paper, we publicly release industrial data from our experiments, as well as an open-source environment to simulate comparable carousel personalization learning problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at RECSYS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers