22/09/2020

Investigating the impact of audio states & transitions for track sequencing in music streaming sessions

Aaron Ng, Rishabh Mehrotra

Keywords: Audio States, Recommender Systems, Hidden Markov Model, Track Sequencing

Abstract: Music streaming is inherently sequential in nature, with track sequence information playing a key role in user satisfaction with recommended music. In this work, we investigate the role audio characteristics of music content play in understanding music streaming sessions. Focusing on 18 audio attributes (e.g. dancability, acousticness, energy), we formulate audio transitioning in a session as a multiple changepoint detection problem, and extract latent states of different audio attributes within each session. Based on insights from large scale music streaming data from a popular music streaming platform, we investigate questions around the extent to which audio characteristics fluctuate within streaming sessions, the heterogeneity across different audio attributes and their impact on user satisfaction. Furthermore, we demonstrate the promise of such audio-based characterizing of sessions in better sequencing tracks in a session, and highlight the potential gains in user satisfaction on offer. We discuss implications on the design of track sequencing models, and identify important prediction tasks to further research on the topic.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at RECSYS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers