25/07/2020

ASiNE: Adversarial signed network embedding

Yeon-Chang Lee, Nayoun Seo, Kyungsik Han, Sang-Wook Kim

Keywords: adversarial learning, signed network embedding, balance theory

Abstract: Motivated by a success of generative adversarial networks (GAN) in various domains including information retrieval, we propose a novel signed network embedding framework, ASiNE, which represents each node of a given signed network as a low-dimensional vector based on the adversarial learning. To do this, we first design a generator G+ and a discriminator D+ that consider positive edges, as well as a generator G - and a discriminator D- that consider negative edges: (1) G+/G- aim to generate the most indistinguishable fake positive/negative edges, respectsupively; (2) D+/D aim to discriminate between real positive/negative edges and fake positive/negative edges, respectively. Furthermore, under ASiNE, we propose two new strategies for effective signed network embedding: (1) an embedding space sharing strategy for learning both positive and negative edges; (2) a fake edge generation strategy based on the balance theory. Through extensive experiments using five real-life signed networks, we verify the effectiveness of each of the strategies employed in ASiNE. We also show that ASiNE consistently and significantly outperforms all the state-of-the-art signed network embedding methods in all datasets and with all metrics in terms of accuracy of sign prediction.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401079#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers