25/07/2020

Group-aware long- and short-term graph representation learning for sequential group recommendation

Wen Wang, Wei Zhang, Jun Rao, Zhijie Qiu, Bo Zhang, Leyu Lin, Hongyuan Zha

Keywords: user modeling, sequential group recommendation, graph representation learning

Abstract: Sequential recommendation and group recommendation are two important branches in the field of recommender system. While considerable efforts have been devoted to these two branches in an independent way, we combine them by proposing the novel sequential group recommendation problem which enables modeling group dynamic representations and is crucial for achieving better group recommendation performance. The major challenge of the problem is how to effectively learn dynamic group representations based on the sequential user-item interactions of group members in the past time frames. To address this, we devise a Group-aware Long- and Short-term Graph Representation Learning approach, namely GLS-GRL, for sequential group recommendation. Specifically, for a target group, we construct a group-aware long-term graph to capture user-item interactions and item-item co-occurrence in the whole history, and a group-aware short-term graph to contain the same information regarding only the current time frame. Based on the graphs, GLS-GRL performs graph representation learning to obtain long-term and short-term user representations, and further adaptively fuse them to gain integrated user representations. Finally, group representations are obtained by a constrained user-interacted attention mechanism which encodes the correlations between group members. Comprehensive experiments demonstrate that GLS-GRL achieves better performance than several strong alternatives coming from sequential recommendation and group recommendation methods, validating the effectiveness of the core components in GLS-GRL.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401136#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers