25/07/2020

Bridging hierarchical and sequential context modeling for question-driven extractive answer summarization

Yang Deng, Wenxuan Zhang, Yaliang Li, Min Yang, Wai Lam, Ying Shen

Keywords: query-based summarization, question answering

Abstract: Non-factoid question answering (QA) is one of the most extensive yet challenging application and research areas of retrieval-based question answering. In particular, answers to non-factoid questions can often be too lengthy and redundant to comprehend, which leads to the great demand on answer sumamrization in non-factoid QA. However, the multi-level interactions between QA pairs and the interrelation among different answer sentences are usually modeled separately on current answer summarization studies. In this paper, we propose a unified model to bridge hierarchical and sequential context modeling for question-driven extractive answer summarization. Specifically, we design a hierarchical compare-aggregate method to integrate the interaction between QA pairs in both word-level and sentence-level into the final question and answer representations. After that, we conduct the question-aware sequential extractor to produce a summary for the lengthy answer. Experimental results show that answer summarization benefits from both hierarchical and sequential context modeling and our method achieves superior performance on WikiHowQA and PubMedQA.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401208#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers