25/07/2020

MGNN: A multimodal graph neural network for predicting the survival of cancer patients

Jianliang Gao, Tengfei Lyu, Fan Xiong, Jianxin Wang, Weimao Ke, Zhao Li

Keywords: multimodal, medical information retrieval, graph neural networks, cancer survival prediction

Abstract: Predicting the survival of cancer patients holds significant meaning for public health, and has attracted increasing attention in medical information communities. In this study, we propose a novel framework for cancer survival prediction named Multimodal Graph Neural Network (MGNN), which explores the features of real-world multimodual data such as gene expression, copy number alteration and clinical data in a unified framework. In order to explore the inherent relation, we first construct the bipartite graphs between patients and multimodal data. Subsequently, graph neural network is adopted to obtain the embedding of each patient on different bipartite graphs. Finally, a multimodal fusion neural layer is designed to fuse the features from different modal data. The output of our method is the classification of short term survival or long term survival for each patient. Experimental results on one breast cancer dataset demonstrate that MGNN outperforms all baselines. Furthermore, we test the trained model on lung cancer dataset, and the experimental results verify the strong robust by comparing with state-of-the-art methods.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401214#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers