25/07/2020

Proposal and comparison of health specific features for the automatic assessment of readability

Hélder Antunes, Carla Teixeira Lopes

Keywords: natural language processing, machine learning, readability, consumer health search

Abstract: Looking for health information is one of the most popular activities online. However, the specificity of language on this domain is frequently an obstacle to comprehension, especially for the ones with lower levels of health literacy. For this reason, search engines should consider the readability of health content and, if possible, adapt it to the user behind the search. In this work, we explore methods to assess the readability of health content automatically. We propose features capable of measuring the specificity of a medical text and estimate the knowledge necessary to comprehend it. The features are based on information retrieval metrics and the log-likelihood of a text with lay and medico-scientific language models. To evaluate our methods, we built and used a dataset composed of health articles of Simple English Wikipedia and the respective documents in ordinary Wikipedia. We achieved a maximum accuracy of 88

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401187#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers