19/10/2020

Modelling regional crime risk using directed graph of check-ins

Shakila Khan Rumi, Flora D. Salim

Keywords: crime, data mining, human mobility

Abstract: The location-based social network, Foursquare, reflects the human activities of a city. The mobility dynamics inferred from Foursquare helps us understanding urban social events like crime In this paper, we propose a directed graph from the aggregated movement between regions using Foursquare data. We derive region risk factor from the movement direction, quantity and crime history in different periods of the day. Later, we propose a new set of features, DIrected graph Flow FEatuRes (DIFFER) which are associated with region risk factor. The reliable correlations between DIFFER and crime count are observed. We verify the effectiveness of the DIFFER in monthly crime count using Linear, XGBoost, and Random Forest regression in two cities, Chicago and New York City.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412065#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers