19/10/2020

An empirical study on clarifying question-based systems

Jie Zou, Evangelos Kanoulas, Yiqun Liu

Keywords: conversational recommendation, asking clarifying questions, question-based systems, empirical study, conversational search

Abstract: Search and recommender systems that take the initiative to ask clarifying questions to better understand users’ information needs are receiving increasing attention from the research community. However, to the best of our knowledge, there is no empirical study to quantify whether and to what extent users are willing or able to answer these questions. In this work, we conduct an online experiment by deploying an experimental system, which interacts with users by asking clarifying questions against a product repository. We collect both implicit interaction behavior data and explicit feedback from users showing that: (a) users are willing to answer a good number of clarifying questions (11 on average), but not many more than that; (b) most users answer questions until they reach the target product, but also a fraction of them stops due to fatigue or due to receiving irrelevant questions; (c) part of the users’ answers (17

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412094#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers