19/10/2020

Prospective modeling of users for online display advertising via deep time-aware model

Djordje Gligorijevic, Jelena Gligorijevic, Aaron Flores

Keywords: time-aware prediction, prospective advertising, deep learning

Abstract: Prospective display advertising poses a particular challenge for large advertising platforms. The existing machine learning algorithms are easily biased towards the highly predictable retargeting events that are often non-eligible for the prospective campaigns, thus exhibiting a decline in advertising performance. To that end, efforts are made to design powerful models that can learn from signals of various strength and temporal impact collected about each user from different data sources and provide a good quality and early estimation of users’ conversion rates. In this study, we propose a novel deep time-aware approach designed to model sequences of users’ activities and capture implicit temporal signals of users’ conversion intents. On several real-world datasets, we show that the proposed approach consistently outperforms other, previously proposed approaches by a significant margin while providing interpretability of signal impact to conversion probability.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412739#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers