Abstract:
This study examines the impact of the ’diversity’ of product recommendations on the ’preference’ of a customer, using online/offline data from a leading fashion company. First, through interviews with fashion professionals, we categorized the characteristics of customers into four types - gift, coordinator, carry-over, and trendsetter. Then, using a hybrid filtering method, we increased the accuracy and diversity of recommended products. We derived 13 salient features that reflect customer behavior based on the Purchase Funnel model and built a classification model that predicts a customer’s preference rates. Second, we conducted two large-scale user tests with 20,000 real customers to verify the effectiveness of our recommendation system. Study results empirically demonstrated the importance of diversity of recommended products. The more diverse the product recommendations were, the higher the purchase rate, the average purchase amount, and the cross purchase rate were observed. In addition, we tracked the customers? purchase for two months after the user tests and found that diverse product exposure positively influenced customer retention (e.g., repurchase rate, amount).