19/10/2020

ITAD: Integrative tensor-based anomaly detection system for reducing false positives of satellite systems

Youjin Shin, Sangyup Lee, Shahroz Tariq, Myeong Shin Lee, Okchul Jung, Daewon Chung, Simon S. Woo

Keywords: tensor decomposition, anomaly detection, k-means clustering, dynamic threshold

Abstract: Reducing false positives while detecting anomalies is of growing importance for various industrial applications and mission-critical infrastructures, including satellite systems. Undesired false positives can be costly for such systems, bringing the operation to a halt for human experts to determine if the anomalies are true anomalies that need to be mitigated. Although rule-based or machine learning-based anomaly detection approaches have been studied, a tensor-based decomposition method has not been extensively explored. In this work, we introduce an Integrative Tensor-based Anomaly Detection (ITAD) framework to detect anomalies in a satellite system with the goal of minimizing false positives. We construct 3rd-order tensors with telemetry data collected from the Korea Multi-Purpose Satellite-2 (KOMPSAT-2) and calculate the anomaly score using one of the component matrices obtained by applying CANDECOMP/PARAFAC decomposition to detect anomalies. Our result shows that our tensor-based approach outperforms existing methods, achieving higher accuracy and lower false positive rates. And we successfully deployed our anomaly detection system in real KOMPSAT-2 mission operation.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412716#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers