30/11/2020

Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media

Yuki Fujimura, Motoharu Sonogashira, Masaaki Iiyama

Keywords:

Abstract: We propose a learning-based multi-view stereo (MVS) method in scattering media such as fog or smoke with a novel cost volume, called the dehazing cost volume. An image captured in scattering media degrades due to light scattering and attenuation caused by suspended particles. This degradation depends on scene depth; thus it is difficult for MVS to evaluate photometric consistency because the depth is unknown before three-dimensional reconstruction. Our dehazing cost volume can solve this chicken-and-egg problem of depth and scattering estimation by computing the scattering effect using swept planes in the cost volume. Experimental results on synthesized hazy images indicate the effectiveness of our dehazing cost volume against the ordinary cost volume regarding scattering media. We also demonstrated the applicability of our dehazing cost volume to real foggy scenes.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_327.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers