30/11/2020

End-to-end Model-based Gait Recognition

Xiang Li, Yasushi Makihara, Chi Xu, Yasushi Yagi, Shiqi Yu, Mingwu Ren

Keywords:

Abstract: Most existing gait recognition approaches adopt a two-step procedure: a preprocessing step to extract silhouettes or skeletons followed by recognition. In this paper, we propose an end-to-end model-based gait recognition method. Specifically, we employ a skinned multi-person linear (SMPL) model for human modeling, and estimate its parameters using a pre-trained human mesh recovery (HMR) network. As the pre-trained HMR is not recognition-oriented, we fine-tune it in an end-to-end gait recognition framework. To cope with differences between gait datasets and those used for pre-training the HMR, we introduce a reconstruction loss between the silhouette masks in the gait datasets and the rendered silhouettes from the estimated SMPL model produced by a differentiable renderer. This enables us to adapt the HMR to the gait dataset without supervision using the ground-truth joint locations. Experimental results with the OU-MVLP and CASIA-B datasets demonstrate the state-of-the-art performance of the proposed method for both gait identification and verification scenarios, a direct consequence of the explicitly disentangled pose and shape features produced by the proposed end-to-end model-based framework.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_109.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers