23/08/2020

Estimating properties of social networks via random walk considering private nodes

Kazuki Nakajima, Kazuyuki Shudo

Keywords: estimation, private nodes, social networks, random walk, sampling

Abstract: Accurately analyzing graph properties of social networks is a challenging task because of access limitations to the graph data. To address this challenge, several algorithms to obtain unbiased estimates of properties from few samples via a random walk have been studied. However, existing algorithms do not consider private nodes who hide their neighbors in real social networks, leading to some practical problems. Here we design random walk-based algorithms to accurately estimate properties without any problems caused by private nodes. First, we design a random walk-based sampling algorithm that comprises the neighbor selection to obtain samples having the Markov property and the calculation of weights for each sample to correct the sampling bias. Further, for two graph property estimators, we propose the weighting methods to reduce not only the sampling bias but also estimation errors due to private nodes. The proposed algorithms improve the estimation accuracy of the existing algorithms by up to 92.6

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403116#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers