23/08/2020

Building continuous integration services for machine learning

Bojan Karlaš, Matteo Interlandi, Cedric Renggli, Wentao Wu, Ce Zhang, Deepak Mukunthu Iyappan Babu, Jordan Edwards, Chris Lauren, Andy Xu, Markus Weimer

Keywords: machine learning, overfitting prevention, data management, continuous integration, testing

Abstract: Continuous integration (CI) has been a de facto standard for building industrial-strength software. Yet, there is little attention towards applying CI to the development of machine learning (ML) applications until the very recent effort on the theoretical side. In this paper, we take a step forward to bring the theory into practice.We develop the first CI system for ML, to the best of our knowledge, that integrates seamlessly with existing ML development tools. We present its design and implementation details.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403290#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers