23/08/2020

Learning instrument invariant characteristics for generating high-resolution global coral reef maps

Ata Akbari Asanjan, Kamalika Das, Alan Li, Ved Chirayath, Juan Torres-Perez, Soroosh Sorooshian

Keywords: coral reef segmentation, super resolution, neural networks, domain adaptation

Abstract: Coral reefs are one of the most biologically complex and diverse ecosystems within the shallow marine environment. Unfortunately, these underwater ecosystems are threatened by a number of anthropogenic challenges, including ocean acidification and warming, overfishing, and the continued increase of marine debris in oceans. This requires a comprehensive assessment of the world’s coastal environments, including a quantitative analysis on the health and extent of coral reefs and other associated marine species, as a vital Earth Science measurement. However, limitations in observational and technological capabilities inhibit global sustained imaging of the marine environment. Harmonizing multimodal data sets acquired using different remote sensing instruments presents additional challenges, thereby limiting the availability of good quality labeled data for analysis. In this work, we develop a deep learning model for extracting domain invariant features from multimodal remote sensing imagery and creating high-resolution global maps of coral reefs by combining various sources of imagery and limited hand-labeled data available for certain regions. This framework allows us to generate, for the first time, coral reef segmentation maps at 2-meter resolution, which is a significant improvement over the kilometer-scale state-of-the-art maps. Additionally, this framework doubles accuracy and IoU metrics over baselines that do not account for domain invariance.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403312#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers