23/08/2020

Delivery scope: A new way of restaurant retrieval for on-demand food delivery service

Xuetao Ding, Runfeng Zhang, Zhen Mao, Ke Xing, Fangxiao Du, Xingyu Liu, Guoxing Wei, Feifan Yin, Renqing He, Zhizhao Sun

Keywords: machine learning, spatial computation, location-based retrieval, on-demand food delivery, combinational optimization

Abstract: Recently on-demand food delivery service has become very popular in China. More than 30 million orders are placed by eaters of Meituan-Dianping everyday. Delicacies are delivered to eaters in 30 minutes on average. To fully leverage the ability of our couriers and restaurants, delivery scope is proposed as an infrastructure product for on-demand food delivery area. A delivery scope based retrieval system is designed and built on our platform. In order to draw suitable delivery scopes for millions of restaurant partners, we propose a pioneering delivery scope generation framework. In our framework, a single delivery scope generation algorithm is proposed by using spatial computational techniques and data mining techniques. Moreover, a scope scoring algorithm and decision algorithm are proposed by utilizing machine learning models and combinatorial optimization techniques. Specifically, we propose a novel delivery scope sample generation method and use the scope related features to estimate order numbers and average delivery time in a period of time for each delivery scope. Then we formalize the candidate scopes selection process as a binary integer programming problem. Both branch&bound algorithm and a heuristic search algorithm are integrated in our system. Results of online experiments show that scopes generated by our new algorithm significantly outperform manual generated ones. Our algorithm brings more orders without hurt of users’ experience. After deployed online, our system has saved thousands of hours for operation staff, and it is considered to be one of the most useful operation tools to balance demand of eaters and supply of restaurants and couriers.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403353#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers