23/08/2020

SimClusters: Community-based representations for heterogeneous recommendations at twitter

Venu Satuluri, Yao Wu, Xun Zheng, Yilei Qian, Brian Wichers, Qieyun Dai, Gui Ming Tang, Jerry Jiang, Jimmy Lin

Keywords: community detection, personalization, recommender systems

Abstract: Personalized recommendation products at Twitter target a multitude of heterogeneous items: Tweets, Events, Topics, Hashtags, and users. Each of these targets varies in their cardinality (which affects the scale of the problem) and their "shelf life” (which constrains the latency of generating the recommendations). Although Twitter has built a variety of recommendation systems before dating back a decade, solutions to the broader problem were mostly tackled piecemeal. In this paper, we present SimClusters, a general-purpose representation layer based on overlapping communities into which users as well as heterogeneous content can be captured as sparse, interpretable vectors to support a multitude of recommendation tasks. We propose a novel algorithm for community discovery based on Metropolis-Hastings sampling, which is both more accurate and significantly faster than off-the-shelf alternatives. SimClusters scales to networks with billions of users and has been effective across a variety of deployed applications at Twitter.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403370#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers