25/04/2020

Data-driven Multi-level Segmentation of Image Editing Logs

Zipeng Liu, Zhicheng Liu, Tamara Munzner

Keywords: log segmentation, image editing logs, interaction history, multi-level hierarchy

Abstract: Automatic segmentation of logs for creativity tools such as image editing systems could improve their usability and learnability by supporting such interaction use cases as smart history navigation or recommending alternative design choices. We propose a multi-level segmentation model that works for many image editing tasks including poster creation, portrait retouching, and special effect creation. The lowest-level chunks of logged events are computed using a support vector machine model and higher-level chunks are built on top of these, at a level of granularity that can be customized for specific use cases. Our model takes into account features derived from four event attributes collected in realistically complex Photoshop sessions with expert users: command, timestamp, image content, and artwork layer. We present a detailed analysis of the relevance of each feature and evaluate the model using both quantitative performance metrics and qualitative analysis of sample sessions.

The video of this talk cannot be embedded. You can watch it here:
https://www.youtube.com/watch?v=uCMmEcIE4bM
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CHI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers