25/04/2020

Camera Adversaria

Kieran Browne, Ben Swift, Terhi Nurmikko-Fuller

Keywords: surveillance capitalism, adversarial examples, critical design

Abstract: In this paper we introduce Camera Adversaria; a mobile app designed to disrupt the automatic surveillance of personal photographs by technology companies. The app leverages the brittleness of deep neural networks with respect to high-frequency signals, adding generative adversarial perturbations to users’ photographs. These perturbations confound image classification systems but are virtually imperceptible to human viewers. Camera Adversaria builds on methods developed by machine learning researchers as well as a growing body of work, primarily from art and design, which transgresses contemporary surveillance systems. We map the design space of responses to surveillance and identify an under-explored region where our project is situated. Finally we show that the language typically used in the adversarial perturbation literature serves to affirm corporate surveillance practices and malign resistance. This raises significant questions about the function of the research community in countenancing systems of surveillance.

The video of this talk cannot be embedded. You can watch it here:
https://www.youtube.com/watch?v=cNGHZs47atU
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CHI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers