04/11/2020

CrossFS: A Cross-layered Direct-Access File System

Yujie Ren, Changwoo Min, Sudarsun Kannan

Keywords:

Abstract: We design CrossFS, a cross-layered direct-access file system disaggregated across user-level, firmware, and kernel layers for scaling I/O performance and improving concurrency. CrossFS is designed to exploit host- and device-level compute capabilities. For concurrency with or without data sharing across threads and processes, CrossFS introduces a file descriptor-based concurrency control that maps each file descriptor to one hardware-level I/O queue. This design allows CrossFS’s firmware component to process disjoint access across file descriptors concurrently. CrossFS delegates concurrency control to powerful host-CPUs, which convert the file descriptor synchronization problem into an I/O queue request ordering problem. To guarantee crash consistency in the cross-layered design, CrossFS exploits byte-addressable nonvolatile memory for I/O queue persistence and designs a lightweight firmware-level journaling mechanism. Finally, CrossFS designs a firmware-level I/O scheduler for efficient dispatch of file descriptor requests. Evaluation of emulated CrossFS on storage-class memory shows up to 4.87X concurrent access gains for benchmarks and 2.32X gains for real-world applications over the state-of-the-art kernel, user-level, and firmware file systems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OSDI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers