04/11/2020

From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

Keywords:

Abstract: We introduce BOURBON, a log-structured merge (LSM) tree that utilizes machine learning to provide fast lookups. We base the design and implementation of BOURBON on empirically-grounded principles that we derive through careful analysis of LSM design. BOURBON employs greedy piecewise linear regression to learn key distributions, enabling fast lookup with minimal computation, and applies a cost-benefit strategy to decide when learning will be worthwhile. Through a series of experiments on both synthetic and real-world datasets, we show that BOURBON improves lookup performance by 1.23x-1.78x as compared to state-of-the-art production LSMs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OSDI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers