Abstract:
Today's edge networks continue to see an increasing number of deployed IoT devices. These IoT devices aim to increase productivity and efficiency; however, they are plagued by a myriad of vulnerabilities. Industry and academia have proposed protecting these devices by deploying a "bolt-on" security gateway to these edge networks. The gateway applies security protections at the network level. While security gateways are an attractive solution, they raise a fundamental concern: This paper identifies key challenges in realizing this goal and sketches a roadmap for providing trust in bolt-on edge IoT security gateways. Specifically, we show the promise of using a micro-hypervisor driven approach for delivering practical (deployable today) trust that is catered to both end-users and gateway vendors alike in terms of cost, generality, capabilities, and performance. We describe the challenges in establishing trust on today's edge security gateways, formalize the adversary and trust properties, describe our system architecture, present preliminary results, and discuss open questions. We foresee our trusted security gateway architecture becoming a practical and extensible foundation towards realizing robust trust properties on edge security gateways.