Abstract:
Storage and memory technologies are experiencing unprecedented transformation. Storage-class memory (SCM) delivers near-DRAM performance in non-volatile storage media and became commercially available in 2019. Unfortunately, software is not yet able to fully benefit from such high-performance storage. Processing-in-memory (PIM) aims to overcome the notorious memory wall; at the time of writing, hardware is close to being commercially available. This paper takes a position that PIM will become an integral part of future storage-class memories, so data processing can be performed in-storage, saving memory bandwidth and CPU cycles. Under that assumption, we identify typical data-processing tasks poised for in-storage processing, such as compression, encryption and format conversion. We present evidence supporting our assumption and present some feasibility experiments on new PIM hardware to show the potential.