14/06/2020

Unsupervised Domain Adaptation With Hierarchical Gradient Synchronization

Lanqing Hu, Meina Kan, Shiguang Shan, Xilin Chen

Keywords: domain adaptation, distribution alignment gradient consistency, adversarial learning

Abstract: Domain adaptation attempts to boost the performance on a target domain by borrowing knowledge from a well established source domain. To handle the distribution gap between two domains, the prominent approaches endeavor to extract domain-invariant features. It is known that after a perfect domain alignment the domain-invariant representations of two domains should share the same characteristics from perspective of the overview and also any local piece. Inspired by this, we propose a novel method called Hierarchical Gradient Synchronization to model the synchronization relationship among the local distribution pieces and global distribution, aiming for more precise domain-invariant features. Specifically, the hierarchical domain alignments including class-wise alignment, group-wise alignment and global alignment are first constructed. Then, these three types of alignment are constrained to be consistent to ensure better structure preservation. As a result, the obtained features are domain invariant and intrinsically structure preserved. As evaluated on extensive domain adaptation tasks, our proposed method achieves state-of-the-art classification performance on both vanilla unsupervised domain adaptation and partial domain adaptation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers