14/06/2020

Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines

Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux, Felix Heide

Keywords: hardware-in-the-loop, end-to-end optimization, image processing pipelines, hyperparameter optimization, computational imaging, coomputational photography

Abstract: Commodity imaging systems rely on hardware image signal processing (ISP) pipelines. These low-level pipelines consist of a sequence of processing blocks that, depending on their hyperparameters, reconstruct a color image from RAW sensor measurements. Hardware ISP hyperparameters have a complex interaction with the output image, and therefore with the downstream application ingesting these images. Traditionally, ISPs are manually tuned in isolation by imaging experts without an end-to-end objective. Very recently, ISPs have been optimized with 1st-order methods that require differentiable approximations of the hardware ISP. Departing from such approximations, we present a hardware-in-the-loop method that directly optimizes hardware image processing pipelines for end-to-end domain-specific losses by solving a nonlinear multi-objective optimization problem with a novel 0th-order stochastic solver directly interfaced with the hardware ISP. We validate the proposed method with recent hardware ISPs and 2D object detection, segmentation, and human viewing as end-to-end downstream tasks. For automotive 2D object detection, the proposed method outperforms manual expert tuning by 30% mean average precision (mAP) and recent methods using ISP approximations by 18% mAP.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers