14/06/2020

On Vocabulary Reliance in Scene Text Recognition

Zhaoyi Wan, Jielei Zhang, Liang Zhang, Jiebo Luo, Cong Yao

Keywords: scene text recognition, text spotting, document analysis, ocr, scene text detection, sequence recognition, language and vision

Abstract: The pursuit of high performance on public benchmarks has been the driving force for research in scene text recognition, and notable progresses have been achieved. However, a close investigation reveals a startling fact that the state-of-the-art methods perform well on images with words within vocabulary but generalize poorly to images with words outside vocabulary. We call this phenomenon ``vocabulary reliance''. In this paper, we establish an analytical framework, in which different datasets, metrics and module combinations for quantitative comparisons are devised, to conduct an in-depth study on the problem of vocabulary reliance in scene text recognition. Key findings include: (1) Vocabulary reliance is ubiquitous, i.e., all existing algorithms more or less exhibit such characteristic. (2) Attention-based decoders prove weak in generalizing to words outside vocabulary and segmentation-based decoders perform well in utilizing visual features. (3) Context modeling is highly coupled with the prediction layers. These findings provide new insights and can benefit future research in scene text recognition. Furthermore, we propose a simple yet effective mutual learning strategy to allow models of two families (attention-based and segmentation-based) to learn collaboratively. This remedy alleviates the problem of vocabulary reliance and significantly improves the overall scene text recognition performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers