14/06/2020

Fashion Outfit Complementary Item Retrieval

Yen-Liang Lin, Son Tran, Larry S. Davis

Keywords: complementary item retrieval, outfit completion, subspace learning

Abstract: Complementary fashion item recommendation is critical for fashion outfit completion. Existing methods mainly focus on outfit compatibility prediction but not in a retrieval setting. We propose a new framework for outfit complementary item retrieval. Specifically, a category-based subspace attention network is presented, which is a scalable approach for learning the subspace attentions. In addition, we introduce an outfit ranking loss that better models the item relationships of an entire outfit. We evaluate our method on the outfit compatibility, FITB and new retrieval tasks. Experimental results demonstrate that our approach outperforms state-of-the-art methods in both compatibility prediction and complementary item retrieval.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers