14/06/2020

Semi-Supervised Semantic Image Segmentation With Self-Correcting Networks

Mostafa S. Ibrahim, Arash Vahdat, Mani Ranjbar, William G. Macready

Keywords: semi-supervised semantic segmentation, ancillary model, self-correction net, noisy labels

Abstract: Building a large image dataset with high-quality object masks for semantic segmentation is costly and time-consuming. In this paper, we introduce a principled semi-supervised framework that only use a small set of fully supervised images (having semantic segmentation labels and box labels) and a set of images with only object bounding box labels (we call it the weak-set). Our framework trains the primary segmentation model with the aid of an ancillary model that generates initial segmentation labels for the weak-set and a self-correction module that improves the generated labels during training using the increasingly accurate primary model. We introduce two variants of the self-correction module using either linear or convolutional functions. Experiments on the PASCAL VOC 2012 and Cityscape datasets show that our models trained with a small fully supervised set perform similar to, or better than, models trained with a large fully supervised set while requiring 7x less annotation effort.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers