14/06/2020

Rotation Consistent Margin Loss for Efficient Low-Bit Face Recognition

Yudong Wu, Yichao Wu, Ruihao Gong, Yuanhao Lv, Ken Chen, Ding Liang, Xiaolin Hu, Xianglong Liu, Junjie Yan

Keywords: open-set face recognition, low-bit quantization, rotation consistent margin

Abstract: In this paper, we consider the low-bit quantization problem of face recognition (FR) under the open-set protocol. Different from well explored low-bit quantization on closed-set image classification task, the open-set task is more sensitive to quantization errors (QEs). We redefine the QEs in angular space and disentangle it into class error and individual error. These two parts correspond to inter-class separability and intra-class compactness, respectively. Instead of eliminating the entire QEs, we propose the rotation consistent margin (RCM) loss to minimize the individual error, which is more essential to feature discriminative power. Extensive experiments on popular benchmark datasets such as MegaFace Challenge, Youtube Faces (YTF), Labeled Face in the Wild (LFW) and IJB-C show the superiority of proposed loss in low-bit FR quantization tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers