14/06/2020

Weakly Supervised Fine-Grained Image Classification via Guassian Mixture Model Oriented Discriminative Learning

Zhihui Wang, Shijie Wang, Shuhui Yang, Haojie Li, Jianjun Li, Zezhou Li

Keywords: fine-grained image recognitionlow-rank mechanism, gaussian mixture model

Abstract: Existing weakly supervised fine-grained image recognition (WFGIR) methods usually pick out the discriminative regions from the high-level feature maps directly. We discover that due to the operation of stacking local receptive filed, Convolutional Neural Network causes the discriminative region diffusion in high-level feature maps, which leads to inaccurate discriminative region localization. In this paper, we propose an end-to-end Discriminative Feature-oriented Gaussian Mixture Model (DF-GMM), to address the problem of discriminative region diffusion and find better fine-grained details. Specifically, DF-GMM consists of 1) a low-rank representation mechanism (LRM), which learns a set of low-rank discriminative bases by Gaussian Mixture Model (GMM) in high-level semantic feature maps to improve discriminative ability of feature representation, 2) a low-rank representation reorganization mechanism (LR$ ^2 $M) which resumes the space information corresponding to low-rank discriminative bases to reconstruct the low-rank feature maps. It alleviates the discriminative region diffusion problem and locate discriminative regions more precisely. Extensive experiments verify that DF-GMM yields the best performance under the same settings with the most competitive approaches, in CUB-Bird, Stanford-Cars datasets, and FGVC Aircraft.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers